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Abstract-The author in this paper investigates the 3-D stress field in the immediate vicinity of a
bonded interface and the free edge of a hole in a laminated composite plate. The laminates arc
assumed t" be of h,'mllgeneous and isotropic materials. but of dilTerent elastic properties. As to
loading. a uniform tensile load is applied in the plane of the plate and at points far remote from
the hole (shown in Fig. I).

In constructing the Illcal asymptotic solution. the author assumes the 3-D field in a certain
li.'rm which then permits a straightforward Williams approach li..'r the determination of the stress
singularities. The displacement and stress fields arc rl'Cowred explicitly and a stress singularity is
shown to exist for certain shear moduli ratios of G:.(j,. In general. the stress singularity is shown
to be a function 1'1' the respective ratios of the she;lr nHlduli and P\lisson's ratio. Moreover. the
presence of a sec,'nd singularity is observed which has signilicant implications for the pwblem of
adhesion. An extensi'lI1 of the results to anisotropic layers is also discussed.

I NTROI>UCTION

Composite laminates arc heing used extensivdy in aerospace structures. Many of these
laminates. howcver. devdop high interlaminar stresses ncar holes that ultimatdy cause
ddaminations. Knowledge of the stress fidd in such areas is of great importance to the
designer. Unfortunatdy. the prohlem is 3-D in nature and as a result it is very diflicult to
solve. Moreover. the presence of two dif1i:rent material interfaces makes the problem even
more complex.

Problems of this type have been investigated from a 2-D point of view by many
researchers and the results l:an be found in the literature. For example. Knein (1927) looked
into the plane strain prohlem of an orthogonal dastil: wedge bonded to a rigid base. Rongved
(1955) investigated the problem of two bonded dastic half-spal:es subjel:ted to a con
l:entratcd forl:e in the interior. Subsequently. Williams (1959) studied the stress fidd around
a fault or a crack in dissimilar media. The work was then generalized by Ril:e and Sih
(1965) also to include arbitrary angles.

Bogy ( 196X) considered the general problem of two bonded quarter-planes ofdissimilar
isotropic. dastil: materials subjel:ted to arbitrary boundary tractions. The problem was
soln:d by a straightforward applil:ation of the Mellin transform in conjunl:tion with the Airy
stress function. A few years later. Bogy (1971) extent!t:d his work to also include dissimilar
w~dges ofarhitrary angles. A few months later. Hein and Erdogan (1971). using the same
m~thod of solution. independently reproduced the results by Bogy. Finally. Westmann
(1975) studied the case of a \vedge of an arbitrary angle which was bonded along a flnite
length to a half-space. "is analysis showed the presence of two singularities close to each
oth~r. Thus. elimination of th~ lirst singular term do~s not lead to a bounded str~ss field
silKe the second singularity is still present.

Based on 3-D considerations.t Luk and Keel' (1979) investigated the stress field in an
elastic half space containing a partially embedded axially loaded. rigid cylindrical rod. The
prohlem was formulated in terms of Hankel integral transforms and was flnally cast into a
system ofcoupled singular integral equations the solution of which was sought numerically.
The authors were able. however. to extract in the limit from the integral equations the
l:haracteristic equation governing the singular behavior at the intersection of the free surface

t Due to the symmctry or the applied load. the problem is 2-D.
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Fig. I. Laminatcd platc wcakcncd by a cylindrical holc.

and that of the rigid inclusion. Their result was in agreement with that obtained by Williams
(195:!) for a right-angle corner with tixed·· free boundary conditions.

HarilOs and Keer (llJ80) investigated the stress field in a half-space containing an
emhedded rigid block under the conditions of plane strain. The prohlem was formulated
hy cleverly superimposing the solutions to the problems of horizontal and vcrtil:al line
inclusions beneath an elastic half-spal:e. By isolating the pertinent terms. the authors were
ahle to extral:t direl:tly from the integral equations the order of the stress singularity at both
l:orners. Both results arc in agreement with the Williams solution. Moreover. the authors
point out the importanl:e of the second singularity to the results of the load transfer
prohlems.

Ddale (llJ84) extended the solution reported by Alblas (llJ57) for the equilihrium or
one linear e1astil: layer with a hole to the case of two layers of dilrcrent materials. He also
looked into the stress singularity at the vicinity of the hole but the estimate of the singularity
is based on 2-0 considerations. Finally. Folias (1987). utilizing the form of a general 3-D
solution for the equilibrium of linear e1astil: layers. whidl he previously developed was able
to derive explil:itly the 3-D displal:ement and stn:ss fields at the intersel:tion of a hole and
a free surfal:e. The analysis revealed that the stresses at the l:orner arc proportional to p' .:

where p represents the 10l:al radius from the l:orner ami tJ.==3.73959±iI.I190:!. It is
interesting to note that the root is precisely the same as that obtained by Williams (llJ5:!)
in his c1assil: paper for a 90 material corner with free-free stress boundaries.

The same general 3-0 solution can now be used to solve the exact 3-0 stress field in
the vil:inity of the intersection of an interface with the free surface of the hole in a laminated
wmposite plate. Although our ultimate goal is the determination of the stress tield in
transversely isotropil: laminae. in this paper we will investigate the simpler case where the
laminae arc made of homogeneous and isotropic materials.

FORMULATION OF THE PROBLEM

Consider the equilibrium of a laminated composite plate which occupies the spaee
Ixl < x... 1.1'1 <X! and 1=1 ~ It and l:ontains a cylindrical hole of radius it whose generators
arc perpendil:ular to the bounding planes. namely === ± It. The plate is composed of laminae
that arc made of homogeneous and isotropic material but of different clastic properties.
Thl: laminates are assumed to be perfectly bonded at the interface. The plate is subjected
to a uniform tensile stress field. applied far away from the hole (see Fig. I).

In the absence of body forces. the coupled differential equations governing the dis
placement functions 11:"'1 arc
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(I)

where V~ is the laplacian operator. \'", is Poisson's ratio. 1/: Il and I/:~) represent the dis
placement functions in media I and 2, respcctively. and

CI/I"')

el",) = --'- . I" 3 I .,_ ~ 1 = ,_. ; nl = ._.
(.x,

The strcss-displaccment relations arc given by Hookc's law as

where lm and G", arc material constants describing media I and 2.

METIIOD OF SOLUTION

(2)

(3)

The main objective of this analysis is to derive an asymptotic solution that is valid in
the immediate vicinity of the corner point. i.e. the point where the interface meets the free
surface of the hole. Guided by a general solution to the equilibrium of linear elastic
layers which the author constructed in a previous paper (Folias. 1975) we assume the
complementary displacement lidd in the form

(4)

(5)

(6)

whcre the functions f:'"). j = 1,2.3. are threc-dimensional harmonic functions. If we
furthermore assume that

(7)

thcn the functions Ht) must satisfy the following equation:

(8)

It is found convenicnt at this stagc to introducc thc local coordinate system (see Fig. 2)
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r-a = p cos rJ>

: :: p sin eP

in view of which, eqn (8) may now be written as

(9)

Under the assumption that the radius of the inclusion is sufficiently large. so that the
condition p « a be meaningful, we seek the solution to eq (9) in the form

Nt' = L p~+nF~:')(q,)
,,~O

( 10)

where 0: stands for a constant. Without going into the mathematical details. we construct
the following series representations in ascending powers of p.

+2eeml sin (et: - 2)1> +2D cm )cos (:x - 2)c/J} cos (20) (II)

where

( 14)

and

( 15)

and 2, A l"'J, 11;"" are constants to be determined from the boumlary conditions. In particular,

at 4) = 0: (J"~~l = (J"~;l ( 16)

rill = r~;) ( 17)x,;::

r~~1 =r:;' ( 18)

iiI I) = 1/121 ( 19)

l'( II = t'1~) (20)

\1'( II = 11,1 ~I (21 )

at ¢ = rr/2: <;1 1 = 0 (22)

r;,l' = 0 (23)

a;,') = 0 (24)
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at t/J = -Tt/2: t~;l = 0
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(25)

(26)

(27)

Substituting eqns (11)-(13) into eqns (16)-(27) one finds that all the boundary con
ditions are satisfied if one considers the following combinations to vanish:

{ ('1 [ (I-Vz) (l-vz)J ('I}-(GZ/G 1 ) CJ.Bt + CJ.+ 8v z 1-2vz -4 1- 2vz D' = 0 (28)

8\1) = 0 (32)

{ (
I - V I ) [ II I ( I I II I [ I - VI] ( I I} (om)CJ. _. .... A I - A z ]- A I + (X - 4 _o___ C tan-·
1-2vl 1-2v, 2

{ ( I-VI) (11 (I) II) [ I-VI] (II}+ (X .•_--.- [8 1 -Hz ]-B I + (X-4 --- D
1-2v l 1-2vl = 0 (33)

(35)

(36)

The characteristic value (X may now be determined by setting the determinant of the
algebraic system (28)-(36) equal to zero. Once the roots have been determined. the complete
displacement and stress fields can be constructed in ascending powers of p.

Without going into the mathematical details. the characteristic values (X are constant
and can easily be determined with the aid of a computer. Although the equation has an
infinite number of complex roots. only roots with a I < min Re a < 2 are of practical
interest for they lead to singular stresses. In general. the characteristic values of a depend
on the material properties of the laminae. Thus. the displacement field now reads:
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Fi~. 3. Slrl'I1~lh (1ftt1l'slll~1IIarily vs (1,,(1, for v, v, = O..U.

tlte displaccmcnt ficld

I/,m) =: ~p r I {A jnl sin (2 _ I )(p + Ht;'<1 COS (2 _. I )(p + e,ml sin (2 - J )(p

+n,m) cos ('X -':\)(pl sin (}cos (20)

+ 21" I: e'ml cos (2 - 2)4) - /)'ml sin ('X - 2)(/J) sin (p sin (Jcos (20) (37)

I'lm) = 'Y..p' I rA inl sin (2 - I )(p + Bin) cos ('X - I )(p +e,ml sin ('X - J)(p

+ /)11/1 1 cos (x -3)(p) cosOcos(20)

+ 21" I {Cin,cos (x 2)(p - Din) sin (x - 2)(pl sin 41 cos (}cos (2IJ) (38)

"',m' :::: 'Y..I" I: A '[,,' cos (2 - I )(p - B'["I sin (x - I )(p + e,ml cos {2 - 3)(p

- DII/II sin ('X - 3)(/>} cos (2V)

- 2p' I {e'ml cos ('X 2)(/) - DII/II sin (x - 2)(p} cos (P cos (20). (39)

The analysis dearly shows that. in the neighborhood of the interface and the free
surface of the hole. the stress tield is proportional to p' - Z and that for certain material
properties it is singular. Moreover. the characteristic values :x are independent of () but they
do depend on the material properties of the adjacent laminae. The first root IX is found to
be precisely the same as that of the corresponding 2-D case reported by Bogy (1971).
Figures 3 and 4 depict typical results for various material properties. Finally. in the limit
as G! -+ 'X.!. i.e. for a perfectly rigid laminae. the characteristic value of IX :::: 1.7112 is
obtained. Moreover. as G! -+ G I and vz -+ vI. the solution ofa continuous plate is recovered.
a result which clearly meets our expectations.

An extension of this analysis to other angles of intersection with the free surface reveals
the same results as those predicted by Bogy (1971) for the case of plane strain. It may also
be noted that the analysis confirms the presence of another weaker singularity which was
first pointed out by Westmann (1975). While it is true that the singular stress field is
dominated by the largest singularity. the presence of a second singularity has important
implications to the problem of adhesion.

As a practical matter. the designer may now appropriately choose the material con-
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Fig. 4. Strength of the singularity vs G,/G I for v I = 0.33. vz = 0.25.

stants of the laminae so that the coefficients of the singular terms of the interfacial stresses
vanish. There exists a suflicient number of constants that such an objective can indeed be
accomplished.

Focusing next on the interface plane == O. we find the shear and normal stresses. to
be

and

r;;;') = 0+'" (40)

Thus. only the shear stress r~~'l and the normal stress a~~'J arc of concern to the designer
for they may very well contribute to possible debonding.

Perhaps it is appropriate here to note that in the case of transversely isotropict laminae.
with a [0 I and [90 1stacking sequence. the exponent ~ is no longer independent of 0. In
fact. it is a rather complicated function involving the material properties of the laminae as
well as an angular distribution in O. The analysis has recently been completed and the results
will be reported in a follow-up paper. While it is well recognized that even these results may
not represent the actual behavior of a rcal world of laminate structure. it will evincc many
of the stress ficld charactcristics and provide us with a bettcr understanding of thc influence
which the various material constants have on the exponent ~. The author is well aware of
this fact and is prescntly investigating the matter from a micromechanics point of vicw
whereby hc assumes a periodic extension of fibers embedded into a homogeneous and
isotropic matrix with given orientations. He believes that such investigations from diffcrent
angles may ultimately provide us with the proper understanding of the interlaminar stresses
and the proper input to judge the adequacy of the models in predicting the actual behavior
of the material.

t An extension to nrthotrnpic laminae is now also possihlc.
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Finally. it may be noted that we are also investigating the stress tield away from the
hole. for a [0 1[90 ] stacking sequence of transversely isotropic laminae, This analysis will
include. in the limit. the corresponding isotropic case, The results are expected to have the
same characteristics as those obtained by Folias and Wang (1986) flH a single isotropic
layer.
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